synchronous motor - ορισμός. Τι είναι το synchronous motor
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι synchronous motor - ορισμός

MOTOR WITH ROTATION SYNCHRONIZED TO THE SUPPLY CURRENT FREQUENCY
Synchronous machine; Permanent magnet synchronous motor; PMSM; Permanent-magnet synchronous motor; Permanent-magnet motor; Senkron motor; Permanent magnet synchronous; Synchronous electric motor
  • The rotating magnetic field is formed from the sum of the magnetic field vectors of the three phases of the stator windings.
  • DC-excited motor, 1917. The exciter is clearly seen at the rear of the machine.
  • Rotor of a large water pump. The slip rings can be seen below the rotor drum.
  • Miniature synchronous motor used in analog clocks. The rotor is made of permanent magnet.
  • Stator winding of a large water pump
  • Small synchronous motor with integral stepdown gear from a microwave oven
  • Teletype]] machine, non-excited rotor type, manufactured from 1930 to 1955
  • V-curve of a synchronous machine

synchronous motor         
¦ noun an electric motor having a speed exactly proportional to the current frequency.
Reluctance motor         
ELECTRIC MOTOR THAT INDUCES NON-PERMANENT MAGNETIC POLES ON THE FERROMAGNETIC ROTOR
Dyson Digital Motor; Synchronous reluctance motor
A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings.
SDRAM         
SDRAM FAMILY OF COMPUTER MEMORY TECHNOLOGIES
SDR SDRAM; PC100; Pc100; PC133; Pc133; SGRAM; PC66; Prefetch buffer; Virtual Channel Memory; Prefetch buffer width; VC-RAM; Vcram; SLDRAM; Sldram; SyncDRAM; Syncdram; Synchronous Graphics Random Access Memory; SDRAM; Synchronous Dynamic Random Access; Synchronous dynamic random access memory; PC100 RAM; Synchronous Dynamic Random Access Memory; SDRAM burst ordering; SDRAM burst mode; Synchronous graphics RAM; Synchronous DRAM; Synchronous graphics random-access memory; Synchronous dynamic RAM
Synchronous Dynamic Random Access Memory (Reference: RAM, DRAM, IC, Intel, Samsung)

Βικιπαίδεια

Synchronous motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

The synchronous motor and the induction motor are the most widely used types of AC motors. The difference between the two types is that the synchronous motor rotates at a rate locked to the line frequency since it does not rely on current induction to produce the rotor's magnetic field. By contrast, the induction motor requires slip: the rotor must rotate slightly slower than the AC alternations in order to induce current in the rotor winding. Small synchronous motors are used in timing applications such as in synchronous clocks, timers in appliances, tape recorders and precision servomechanisms in which the motor must operate at a precise speed; speed accuracy is that of the power line frequency, which is carefully controlled in large interconnected grid systems.

Synchronous motors are available in self-excited sub-fractional horsepower sizes to high power industrial sizes. In the fractional horsepower range, most synchronous motors are used where precise constant speed is required. These machines are commonly used in analog electric clocks, timers and other devices where correct time is required. In higher power industrial sizes, the synchronous motor provides two important functions. First, it is a highly efficient means of converting AC energy to work. Second, it can operate at leading or unity power factor and thereby provide power-factor correction.